If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v^2-6v-10=0
a = 7; b = -6; c = -10;
Δ = b2-4ac
Δ = -62-4·7·(-10)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{79}}{2*7}=\frac{6-2\sqrt{79}}{14} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{79}}{2*7}=\frac{6+2\sqrt{79}}{14} $
| 5z^2+24z=5z | | -10a=14 | | 11=y/2+8 | | 8k^2+4k-4=0 | | 120(2x−2)= | | 2x-13=22-5 | | 10-x=10–2x | | -45=h+836 | | 10-p=10–2p | | 4x=13=17 | | 100-x=100-2x | | -31k=806 | | 0=-16t^2+72t+84 | | 12x+3=14+25 | | 6+9y=5y+30 | | 0=-16t+72t+84 | | 9x-3+7x=16x-6 | | 6t–10=4t+12 | | h+12.8=12.8 | | 13=y+2 | | x+3+9x-63=x | | -4+f=9 | | -3p+6=31 | | 6x–20=4x+48 | | -25=-5(3x-13) | | 3x-9=65-14 | | 5-3/4x=13-1/2x | | 10m =3m+287m=28 | | 9-9(x+4)-7x=7-2 | | -9(2x-6)=-72 | | 3-(x+9)=3+3 | | 9x-3x+3=-9 |